
Generation, propagation, and switching of orientational waves in photoexcited
liquid-crystalline monolayers

Tohru Okuzono,1 Yuka Tabe,1,2 and Hiroshi Yokoyama1,2

1Yokoyama Nano-structured Liquid Crystal Project, ERATO, Japan Science and Technology Agency,
5-9-9 Tokodai, Tsukuba 300-2635, Japan

2Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba,
Ibaraki 305-8568, Japan

(Received 29 September 2003; published 11 May 2004)

Photoinduced orientational waves in illuminated liquid-crystalline monolayers is one of the most remarkable
far-from-equilibrium phenomena that systems of soft condensed matter exhibit. We model this behavior from
a phenomenological point of view, taking the anisotropic photoexcitation of molecules into account. Numerical
simulations as well as theoretical analyses of the model reveal that the intricate interplay between the sponta-
neous splay deformation of the liquid-crystalline order and the anisotropy of the photoexcitation can lead to the
generation and propagation of orientational waves. The model can explain all the salient features of the
phenomenon—in particular, the anomalous reversal of the propagation direction upon 90° rotation of the
polarization direction of illumination, which evaded theoretical explanation for nearly a decade.
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Nonequilibrium structure formation in soft condensed
matter is one of the most fascinating problems in a cross-
disciplinary field among physics, material science, and biol-
ogy [1]. The orientational waves discovered in illuminated
liquid-crystalline Langmuir monolayers[1–3] are such struc-
tures occurring in a system which is physically well charac-
terized and controllable.

Langmuir monolayers are insoluble monomolecular films
formed at the air-water interface which exhibit a rich variety
of self-organized structures[4]. Certain azobenzene deriva-
tives, indeed, are known to develop two-dimensional(2D)
“smectic-C” liquid-crystalline Langmuir monolayers at mod-
erate surface pressures of around 5 mN/m, in which the con-
stituent rodlike molecules are coherently tilted from the layer
normal [5]. Under illumination with visible to ultraviolet
light, the azobenzene derivatives undergo thetrans-cispho-
toisomerization reaction that converts the molecular confor-
mation from the rod to bent shape and vice versa. In the 2D
smectic-C phase, the continued photoisomerization under
uniform illumination was found to generate spatiotemporal
patterns in the form of orientational waves[2,3], associated
with collective oscillation and propagation of the azimuthal
angle of the tilted molecule[3]. Remarkable features of this
phenomenon are as follows.(i) Only linearly polarized light,
neither circularly nor randomly polarized light, can generate
the orientational waves.(ii ) The propagation direction of the
orientational wave is reversed when the polarization of light
is switched by 90°.(iii ) The traveling waves appear for the
lower intensity of the illumination.(iv) The traveling waves
appear only when the illumination is done near the visible
edge of the optical absorption band.(v) The propagation ve-
locity monotonically increases with the light intensity up to a
certain threshold above which the waves disappear.

Our model, phenomenologically taking account of the 2D
liquid-crystal order as well as the anisotropic photoexcita-
tion, provides a virtually complete description of all these
behaviors of the orientational waves. In contrast to the pre-

vious theoretical study by Reigada, Sagués, and Mikhailov
[6], which assumes essentially the phase separation oftrans-
and cis-isomers, the orientational wave propagation in our
model takes place even if there is no tendency of the phase
separation of the concentration in itself, which is consistent
with experiment. The essential mechanism of wave genera-
tion and propagation lies in the interplay between the spon-
taneous splay deformation of the molecular azimuth and the
anisotropy of photoexcitation, mediated by the varying con-
centration ofcis-isomers. This anisotropic model forms an
entirely new class of pattern-forming systems. By numerical
simulations and a linear stability analysis, we show the na-
ture of the rich nonequilibrium dynamics that the model car-
ries.

Equilibrium properties of the system are determined by
the free energy functional of gross variables relevant to the
phenomenon. Here we take, as such variables, the local di-
rection of the rodlike moleculescsr ,td defined as a projec-
tion of the directorn of the molecules onto the 2D layer
surface and the local concentration difference betweentrans-
andcis-isomerscsr ,td at positionr =sx,yd on the layer sur-
face and at timet. Using these variables we can write the free
energyF in the dimensionless units[7,5],

F =E drF1
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where the sum is taken over the componentci si =x,yd of c
and t, u, D, andx are positive constants. The first term on
the right hand side of Eq.s1d corresponds to the Frank elastic
energy and the second and third terms describe the
smectic-A to smectic-C transitionf8g. Hereafter, we consider
the smectic-C phase only—that is,t.0. The coupling term
with a constantl which gives a spontaneous splay deforma-
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tion is allowed to exist inF because there is no inversion
symmetry aboutc in this systemf7,9–12g. The last two terms
are related to the scalar order parameter. Here we assume
x.0; that is, the concentration field does not tend to phase-
separate in itself. It should be noted that the free energy of
this type leads to spatially nonuniform equilibrium patterns
such as stripes or squares depending on the parameterl f7g.
In this paper, however, we are concerned only with a uni-
form state, since orientational waves are experimentally ob-
served to propagate in the uniform statesf3g. Henceforth, we
restrict the value ofl to a region where the spatially uniform
state is stable in equilibrium.

In the absence of photoisomerization, the system evolves
toward an equilibrium state which minimizes the free energy
F. In this casec and c obey the purely dissipative kinetic
equations for the nonconserved and conserved order param-
eters, respectively[13]. The presence of photoisomerization
gives rise to reaction terms in the kinetic equations which
take the form

] c

] t
= −

dF

dc
+ f , s2d

] c

] t
= M¹2dF

dc
+ g, s3d

with the reaction termsf ;−g2cs1−cd / s1+cd andg;−sg1

+g2dc−sg1−g2d, whereM is the mobility andg1 andg2 are
the trans-to-cis and cis-to-trans reaction rates, respectively.
The reaction termsf andg are derived as a simple extension
of those used for the rate equations of the concentration and
the tilt order in the two-component reactive Langmuir mono-
layers by Reigadaet al. [6].

Since thetrans-to-cis reaction rate should depend on the
relative orientation ofc to the polarization of illumination,
we take the anisotropy of the reaction rate into account by

using the expressiong1=G0ucu2+G1sÊ ·cd2, where Ê
;scosu ,sin ud with the directionu of the polarization of
illumination. According to a simple molecular theory, both
coefficientsG0 and G1 are proportional to the intensity of
illumination and depend on the orientational order oftrans-
molecules. Since we are concerned with a strongly ordered
state, the isotropic part ofg1 should be small. Hence we
assumeG0=0 and G1 is a positive constant for simplicity.
The cis-to-trans reaction rateg2 should be independent of
the orientation of polarization. We hereafter use the param-
etersk;G1/g2 andg;g2 instead ofG1 andg2 so thatg is
proportional to the power of illumination which is experi-
mentally controllable. Henceforth, we putM =0, assuming
that the molecular diffusion is very slow compared with the
photo-induced reaction rates[14].

Figures 1(a)–1(d) show a time evolution of the system
obtained by the numerical simulation based on Eqs.(2) and
(3) for k=1, g=0.05, andu=p /4, starting from the uniform
state with a localized perturbation at the center of simulation
box. Hereafter we fix the parameterst=u=2 andl=1. The
numerical calculations were carried out on a 2563256 two-
dimensional square lattice using a finite difference Euler

scheme with a time stepDt=0.01 and a lattice spacingDx
=1 under Neumann boundary conditions. The spatial distri-
butions of the azimuthf defined asc= ucuscosf ,sin fd at
t=10 (a), 100(b), 200(c), and 2000(d) are displayed in Fig.
1 using the color map shown in the upper right of the figure.
We observe an orientational wave propagating downward in
these figures or, more clearly, in Fig. 1(e), which shows the
spatiotemporal pattern off. Althoughc and the tilt orderucu
also propagate in a similar manner tof, the amplitude of
wave in ucu is much smaller than those inf and c. This
strongly implies that the wave propagation is mainly associ-
ated with the azimuthf as observed in the experiment.

Next, we switch the polarization of light by 90°, namely,
u=−p /4 at t=200 [Fig. 1(c)]. In Fig. 2 snapshots off at t
=250(a), 300(b), and 350(c) after the switching are shown.
We can see in Figs. 2(a)–2(c) and in the spatiotemporal pat-
tern in Fig. 2(d) that the direction of propagation is reversed
after the switching ofu. We also carried out simulations

FIG. 1. (Color) Spatial distributions of azimuthf at t=10 (a),
100 (b), 200(c), and 2000(d) obtained by the numerical simulation
of our model.(e) shows the spatiotemporal pattern off along the
line x=const indicated by the dashed line in figure(d).

FIG. 2. (Color) Spatial distributions of azimuthf at t=250 (a),
300 (b), and 350(c) after switchingu by p /2 at t=200. (d) shows
the spatiotemporal pattern off along the linex=const indicated by
the dashed line in Fig. 1(d).

OKUZONO, TABE, AND YOKOYAMA PHYSICAL REVIEW E 69, 050701(R) (2004)

RAPID COMMUNICATIONS

050701-2



without the anisotropy ofg1 and observed no traveling
waves. These results are consistent with the experimental
facts listed in the second paragraph.

To understand the mechanism of the wave propagation,
we perform a theoretical analysis of Eqs.(2) and (3) using
the approximation that the tilt orderucu is constant, since the
spatial variation of the tilt order is small compared with
those of other variables as mentioned above. For simplicity
we takeucu=1 so thatc=scosf ,sin fd. Then Eqs.(2) and
(3) with M =0 become

] f

] t
= ¹2f + lSsin f

] c

] x
− cosf

] c

] y
D , s4d

1

g

] c

] t
= 1 −c − k cos2su − fds1 + cd. s5d

These simplified equations have a uniform equilibrium solu-
tion with an arbitrary constantf0 which corresponds to the
azimuthal angle of molecular direction in the uniform state.
A linear stability analysis of Eqs.s4d and s5d around this
equilibrium solution withf0=0 gives the growth ratesq of
the eigenmode for the perturbation proportional to expsiqy
+sqtd with wave numberq as a solution of the equation

sq
2 − ssq + d = 0, s6d

with

s= − q2 − gs1 + k cos2 ud, s7d

d = q2gs1 + k cos2 ud − iq
2lkg sins2ud
1 + k cos2 u

. s8d

The q dependence of the largest eigenvaluesq is shown in
Fig. 3. The real and imaginary parts ofsq as functions ofq
are plotted by solid and dashed lines, respectively, forg
=0.05, k=0.2, andu=p /4. In this figure we find oscilla-
tory unstable modes at finite wave numbers—that is,
Re sq.0 and ImsqÞ0 for qÞ0—which may cause trav-
eling wavesf15,16g. This instability is due to the appear-

ance of the last term in Eq.s8d which comes from the
spontaneous splay term in Eq.s1d and the anisotropy of
the reaction rateg1.

In Fig. 4 we show the linear stability diagram of the uni-
form equilibrium solution of the simplified equation foru
=p /4 obtained by the small-q expansion ofsq. Below the
solid line andg.0 in Fig. 4, the equilibrium solution is
unstable and traveling waves emerge; otherwise, it is stable
[17]. We also show in Fig. 4 the results of numerical simu-
lation of Eqs.(2) and(3) for various values ofsk,gd with the
uniform initial condition—that is, csr ,0d=s1,0d and
csr ,0d=0 with small random perturbations. Traveling waves
or no pattern are observed forsk,gd shown by solid or open
circles in Fig. 4, respectively, in agreement with the linear
stability argument. As observed in the experiments[2,3], we
see in Fig. 4 that the instability occurs in the lowerg region.

The experimental observations show that the emergence
of traveling waves depends on not only the intensity but also
the wavelength of the excitation light. The latter is related to
the parameterk in our model, andk<1 is realized only near
the visible edge of the optical absorption band where the
fractions ofcis- and trans-isomers are comparable. At this
wavelength of excitation light the traveling waves are ob-
served as mentioned in the second paragraph. This agrees
with our theoretical result that the linear stability lineg
=gskd in Fig. 4 has a single peak atk<1.3 where the equi-
librium state is destabilized first asg decreases.

Our theoretical analysis also predicts the experimental ob-
servation that the propagation directions of waves are re-
versed whenu is switched byp /2. We find that the imagi-
nary part ofsq for some value ofu has opposite sign to that
for u+p /2. Hence it is expected that the propagation direc-
tion is reversed by the switchingu→u+p /2 if the system is
still in the unstable region after the switching. It should be,
however, noted that the above argument is based on the lin-
ear stability analysis for the uniform solution, whereas the
system after the switching is no longer uniform. Actually, the
propagation direction is determined by the direction of po-

FIG. 3. Theq dependence of the largest eigenvaluesq. The real
and imaginary parts ofsq as functions ofq are plotted by solid and
dashed lines, respectively, forg=0.05,k=0.2, andu=p /4.

FIG. 4. The linear stability diagram of the uniform equilibrium
solution. Below the solid line andg.0 the equilibrium solution is
unstable and traveling waves emerge; otherwise, it is stable. For the
parameters shown by solid or open circles, traveling waves or no
patterns are observed, respectively, in the numerical simulations
with the uniform initial condition.
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larization and the spatial distribution of molecular direction.
Further discussion is needed why the prediction by the linear
stability analysis is correct in this case. This is, however,
beyond the scope of this paper.

Tabeet al. [3] reported that the propagation velocity of
the traveling wave monotonically increases as the power of
illumination increases. To obtain theg dependence of the
propagation velocity we carried out numerical simulations of
Eqs. (2) and (3) for k=1 andu=p /4 in one spatial dimen-
sion. In Fig. 5 we plot the propagation velocity of the trav-
eling wave obtained by the one-dimensional simulation as a
function of g which is proportional to the power of illumi-
nation. From this figure we find that the velocity monotoni-
cally increases withg and appears to be proportional togn

with n<1/2 in agreement with the recent experimental ob-
servations.

In the present study we have limited the parameterl to
the regime for which uniform equilibrium states are thermo-
dynamically stable. However, if we allowl beyond that
limit, the model predicts another oscillatory instability to ap-
pear at a distinctly higher wave number on top of the un-
stable mode studied here, generating qualitatively new spa-
tiotemporal patterns simultaneously comprized of these two
modes. This behavior may be examined in future experi-

ments and should serve as a further independent test of the
present model. The details will be described in future publi-
cations.
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